BUGS IN YOUR GUTS
  • Home
  • About
  • Microbiome 101
  • Research
  • Publications
  • Get in Touch

Microbiome 101

A space where I occasionally post on aspects of the microbiota and microbiome

Production of short-chain fatty acids

12/2/2023

 
A simplified diagram (Figure 1) outlines polysaccharide breakdown and the main routes of carbohydrate fermentation in the human large intestine. Bacteria and, to a lesser extent, archaea contribute to processes. Two distinct cross-feeding mechanisms operate in the gastrointestinal tract: one due to the consumption of fermentation end-products (lactate, acetate, succinate) and the other due to cross-feeding of partial breakdown products from complex substrates (Falony et al., 2006; Belenguer et al., 2007; Reichardt et al., 2014). Both mechanisms contribute to the production of butyrate and propionate.
Picture
Figure 1. Summary of short-chain fatty acid production by the human gut microbiota. Updated from Hoyles & Wallace (2010) to include propionate formation (Reichardt et al., 2014) and the bifid shunt, which is restricted to Bifidobacterium spp. in the human gut via the action of fructose 6-phosphate phosphoketolase (Pokusaeva et al., 2011). *Akkermansia muciniphila is thought to be produce propionate via the succinate pathway. †Species predicted from sequence analyses to be capable of reductive acetogenesis (Ohashi et al., 2007; Hylemon et al., 2018).

References
Belenguer, A., Duncan, S. H., Holtrop, G., Anderson, S. E., Lobley, G. E. & Flint, H. J. (2007). Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol 73, 6526–6533.
​
Falony, G., Vlachou, A., Verbrugghe, K. & De, Vuyst, L. (2006). Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72, 7835–7841.
Hoyles, L. & Wallace, R. J. (2010). Gastrointestinal tract: intestinal fatty acid metabolism and implications for health. In Handbook of Hydrocarbon and Lipid Microbiology, pp. 3119–3132. Springer, Berlin.
Hylemon, P. B., Harris, S. C. & Ridlon, J. M. (2018). Metabolism of hydrogen gases and bile acids in the gut microbiome. FEBS Lett doi:10.1002/1873-3468.13064.
Ohashi, Y., Igarashi, T., Kumazawa, F. & Fujisawa, T. (2007). Analysis of acetogenic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci Microflora 26, 37–40.
Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. (2011). Carbohydrate metabolism in bifidobacteria. Genes Nutr 6, 285–306.
Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J. & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8, 1323–1335.


Comments are closed.

    Lesley Hoyles

    Professor of Microbiome and Systems Biology, Nottingham Trent University

    Archives

    February 2023

    Categories

    All
    Bacteria
    Microbial Metabolites
    The Human Digestive Tract
    The Human Gut Microbiota

Powered by Create your own unique website with customizable templates.
  • Home
  • About
  • Microbiome 101
  • Research
  • Publications
  • Get in Touch